The Magnetic Properties of the Copper(II) Compounds with 3- and 4-Piperidinecarboxylic Acids

Shuji Emori,* Nobuhide Morishita, and Yoneichiro Muto Department of Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840 (Received March 20, 1986)

Synopsis. Compounds of formula $[CuX_2(C_5H_{11}NCOO)_2]$ -3H₂O (X=NO₃, Cl, Br), $[Cu(NO_3)_2(C_5H_{11}NCOO)_2]$ -2-(NH₂)₂CO, and $Cu[(CH_3)_2CHCOO]_2$ -(NH₂)₂ CO have been prepared. The correlation of their magnetic properties with the pK₄ values of their parent carboxylic acids is discussed.

A recent X-ray study¹⁾ of a compound formed by the reaction of copper(II) nitrate with β -alanine has shown that four 3-ammoniopropionates bridge two copper(II) ions, forming a dimeric structure similar to that of copper(II) acetate monohydrate.^{2,3)} Previously, we also found that dinuclear copper(II) ω-ammonio carboxylates were obtained during a treatment of ω amino carboxylic acids with copper(II) halides.4) Since there still remain unclear points about the influence of a carboxylato substituent on the magnetic properties of dinuclear copper(II) carboxylates,⁵⁾ these ammonio carboxylates seem to be appropriate for studying the substitution effects. Then, as a continuation of our studies, we have prepared several new copper(II) compounds with 3- and 4-piperidinecarboxylic acids (nipecotic and isonipecotic acids) and examined the relation between their magnetic properties and the pK_a values of their parent acids. For the sake of discussion, the urea adduct of copper(II) isobutyrate was also prepared.

Compounds with a stoichiometry of $[CuX_2(C_5H_{11}NCOO)_2] \cdot 3H_2O$ (X=NO₃, Cl, Br) were prepared by a previously described method for copper(II) ω -amino carboxylates.⁴⁾ The urea adducts, $[Cu(NO_3)_2(C_5H_{11}NCOO)_2] \cdot 2(NH_2)_2CO$ and $Cu[(CH_3)_2CHCOO]_2 \cdot (NH_2)_2CO$, were prepared according to the reported general procedure.⁶⁾

The IR spectra of the copper(II) piperidinecarboxylate show bands near 1585—1593 cm⁻¹ connected

with NH₂+ deformations⁷⁾ in addition to the characteristic bands in the ranges of 1430—1450 and 1600—1660 cm⁻¹ connected with symmetric and unsymmetric COO stretching vibrations of the carboxyl groups.⁸⁾

The effective magnetic moments (Table 1) were evaluated from the room-temperature magnetic susceptibilities, which were corrected for the diamagnetic contribution of constituent atoms using Pascal constants⁹⁾ and $N\alpha = 60 \times 10^{-6}$ emu mol⁻¹ (1 emu= $4\pi \times 10^{-6} \text{ m}^3$). The temperature dependence of the magnetic susceptibilities (80-300 K) of [Cu(NO₃)₂(3- $C_5H_{11}NCOO_{2}$] · $3H_2O$, [Cu(NO₃)₂(4-C₅H₁₁NCOO)₂] · 3H₂O, and Cu[(CH₃)₂CHCOO]₂·(NH₂)₂CO were mea-The results agreed well with the Bleaney-Bowers equation,¹⁰⁾ using the following parameters: g=2.13 and 2J=-314 cm⁻¹, g=2.14 and 2J=-330 cm⁻¹, and g=2.18 and 2J=-342 cm⁻¹ for the compounds with 3- and 4-piperidinecarboxylic acids and isobutyric acid, respectively, indicating the presence of a dinuclear unit, which contains four zwitterionic (piperidinio)formate (C₅H₉NH₂+-COO-) bridges between the copper(II) ions similarly to copper(II) acetate monohydrate.

For dimers with this type of structure, it has been pointed out that the magnitude of a superexchange interaction through carboxylato bridging groups is inversely related to the basicity of the bridging group, as measured by the pK_a value of its parent acid.¹⁰ In a previous study of copper(II) (substituted propionate)s, we found that this trend was maintained for a series of copper(II) ω -ammonio carboxylates.⁴⁾ In the present study, the bridging groups were substituted isobutyrate ligands and the pK_a values of the parent acids

Table	1.	Analytical	Data	and	Effective	Magnetic	Moments	at	20°	,C

C		/D3.f					
Compound	Cu	X	Н	C	N	$\mu_{ m eff}/{ m BM}$	
$[Cu(NO_3)_2(3-C_5H_{11}NCOO)_2] \cdot 3H_2O$	12.78		5.63	29.06	11.29	1.37	
	(12.71)		(5.65)	(28.83)	(11.21)		
$[CuCl_2(3-C_5H_{11}NCOO)_2]\cdot 3H_2O$	14.15	16.18	5.97	32.47	6.25	1.32	
	(14.22)	(15.87)	(6.32)	(32.26)	(6.27)		
$[\mathrm{Cu}(\mathrm{NO_3})_2(4\mathrm{-C_5}\mathrm{H_{11}NCOO})_2]\cdot 3\mathrm{H_2O}$	12.82		5.59	28.94	11.24	1.34	
	(12.71)		(5.65)	(28.83)	(11.21)		
$[Cu(NO3)2(4-C5H11NCOO)2] \cdot 2(NH2)2CO$	11.31		5.36	29.61	19.66	1.37	
	(11.23)		(5.34)	(29.71)	(19.80)		
$[CuBr2(4-C5H11NCOO)2] \cdot 3H2O$	11.82	29.51	5.12	26.90	5.19	1.31	
	(11.86)	(29.83)	(5.27)	(26.90)	(5.23)		
$Cu[(CH_3)_2CHCOO]_2 \cdot (NH_2)_2CO$	21.11		6.08	35.77	10.22	1.33	
	(21.34)		(6.09)	(36.30)	(9.41)		

varied from 3.53 and 4.03 (estimated from the Branch-Calvin equation¹²⁾) for 3- and 4-piperidinecarboxylic acids to 4.63 for isobutyric acid. The singlet-triplet separation value (-2J) of [Cu(NO₃)₂(4- $C_5H_{11}NCOO_{2}$] · $3H_2O$ (330cm⁻¹) is larger than that of $[Cu(NO_3)_2(3-C_5H_{11}NCOO)_2]\cdot 3H_2O$ (314 cm⁻¹), and also the magnetic moment of [Cu(NO₃)₂(4-C₅H₁₁- $NCOO_{2}$ $\cdot 2(NH_{2})_{2}CO$ (1.37 BM) is larger than that of $Cu[(CH_3)_2CHCOO]_2 \cdot (NH_2)_2CO \quad (1.33 BM).$ fore, the order for the extent of an antiferromagnetic interaction between the two copper(II) ions is isobutyrate>4-piperidinecarboxylate>3-piperidinecarboxylate, indicating that the magnetic interaction in the series of copper(II) dialkylacetates also tends to decrease as the acid strength of the parent acid becomes stronger.

References

1) M. E. Kamwaya, E. Papavinasam, and S. G. Jeoh, *Acta Crystallogr.*, C40, 2043 (1984).

- 2) J. N. van Niekerk and F. R. L. Schoening. Acta Crystallogr., 6, 227 (1953).
- 3) G. M. Brown and R. Chidambaram, Acta Crystallogr. Sect. B, 29, 2393 (1973).
- 4) S. Emori, T. Noguchi, and Y. Muto, Bull. Chem. Soc. Jpn., 58, 2733 (1985).
- 5) Y. Muto, A. Sasaki, T. Tokii, and M. Nakashima, Bull. Chem. Soc. Jpn., 58, 2572 (1985).
- 6) M. Kishita, M. Inoue, and M. Kubo, *Inorg. Chem.*, 3, 237 (1964).
- 7) L. J. Bellamy, "The Infrared Spectra of Complex Molecules," 3rd ed., Chapman and Hall (1975).
- 8) S. Yamada, H. R. Nakamura, and R. Tsuchida, Bull. Chem. Soc. Jpn., 31, 303 (1958).
- 9) G. Foex, "Constants Sélectionées, Diamagnétisme et Paramagnétisme," Masson, Paris (1957).
- 10) J. Lewis, Y. C. Lin, L. K. Royston, and R. C. Thomson, J. Chem. Soc., 1965, 1171.
- 11) R. W. Jotham, S. F. A. Kettle, and J. A. Marks, J. Chem. Soc., Dalton Trans., 1972, 428.
- 12) G. E. K. Branch and M. Calvin, "The Theory of Organic Chemistry," Prentice-Hall, Inc., New York (1941).